Miniatury matematyczne 77 wielokąty tangramy pole a podziały.

OSZCZĘDZASZ 7,10 ZŁ

okładka

Miniatury matematyczne 77 wielokąty tangramy pole a podziały.

30% taniej
Inpost Paczkomaty 24/712,99 zł
Kurier Inpost12,99 zł
Kurier FedEx13,99 zł
ORLEN paczka8,99 zł
Odbiór osobisty0 zł

Przy płatności za pobraniem do ceny wysyłki należy doliczyć5,00 zł

Wysyłka zagraniczna

Dostępność: 1-2 dni robocze

OPIS

W kolejnej miniaturze powracamy do rozważań związanych z polem figury. Nie będziemy badali wzorów na pola poszczególnych wielokątów. Problem ten jest trudny, między innymi ze względu na wczesny etap matematycznej nauki. Z tego powodu zajmiemy się porównywaniem pól wielokątów. Oczywiście nie będziemy zajmować się pogłębioną analizą samego pojęcia pola. Potraktujemy je w naturalnym i nieco intuicyjnym rozumieniu, tak jak to czyni się w trakcie początkowej nauki szkolnej matematyki. Zajmiemy się szczególnie polem wielokąta, głównie problemami wynikającymi ze słynnego twierdzenia Farkasa Bolyaia i Paula Gerwiena, które odkryli niezależnie w roku 1833.

Jeżeli dwa wielokąty mają równe pola, to zawsze można jeden w nich podzielić na skończoną liczbę takich wielokątów, aby z nich można było ułożyć drugi wielokąt.

Twierdzenie to pozwala porównywać pola wielokątów bez obliczania tych pól. Warto zauważyć, że aby stwierdzić, że dwa wielokąty mają równe pola, wystarczy podzielić każdy z tych wielokątów na mniejsze wielokąty, tak by każdy z tych podziałów miał tyle samo elementów i by każdy wielokąt jednego podziału można nałożyć na pewien wielokąt drugiego podziału, tak by się pokrywały i by te wielokąty w parach wyczerpywały wszystkie wielokąty w obydwu podziałach.

Oznacza to, iż wziąwszy na przykład kwadrat wraz z danym jego podziałem możemy opisywać wielokąty o tym samym polu, dla których istnieje podział złożony z takich samych wielokątów jak podział kwadratu. Czasami te problemy pojawiają się w zadaniach zabawowych, chociaż wcale technicznie niełatwych, przykładem takich problemów są tangramy Będziemy rozważać wielokąty, przeważnie w miarę proste, wraz
z ich podziałem i starać się będziemy opisywać wielokąty mające taki sam podział. Zwracamy uwagę na fakt, iż w początkowym etapie nauki matematyki przy wyprowadzaniu wzorów na pola nieco bardziej złożonych wielokątów korzystaliśmy z metody podziału takich wielokątów na mniejsze wielokąty i składaliśmy z nich wcześniej poznane wielokąty. Warto więc przećwiczyć tę metodę na bardziej skomplikowanych przykładach, tym bardziej że z podobnymi problemami spotykamy się na wielu konkursach matematycznych. Często układane wielokąty z elementów danego podziału przypominają figury lub postacie spotykane w innych sytuacjach – postacie zwierząt, litery, figury szachowe itp – wówczas nie podkreślamy tego, że budujemy wielokąty. Podobnie w odpowiedziach i w rozwiązaniach zadań nie staramy się za każdym razem zachowywać wymiarów poszczególnych elementów podziału, głównie zwracamy uwagę na kształt otrzymywanych wielokątów, chociaż powinniśmy budować wielokąty o danym polu W odpowiedziach i rozwiązaniach, szczególnie w rozdziałach II oraz III, często nie uzasadniamy poprawności odpowiedzi tzn. czy posiadają one żądane własności. Ograniczamy się tylko do manualnego sprawdzenia spełnienia warunków rozwiązania.

Na końcu miniatury dodajemy szereg kartek z umieszczonymi na nich wielokątami, które wcześniej spotkaliśmy w omawianych zadaniach Proponujemy Czytelnikowi sprawdzenie przy ich pomocy prawdziwości zamieszczonych odpowiedzi i być może poszukanie innych rozwiązań tych zadań.

DODATKOWE INFORMACJE

  • Format:160x240 mm
  • Liczba stron:64800243897799266
  • Oprawa:Miękka
  • ISBN-13:9788366838147
  • Data wydania:24 czerwiec 2022
  • Numer katalogowy:528822

RECENZJEjak działają recenzje?

Lista recenzji jest pusta

DOSTAWA

DARMOWA dostawa powyżej 299 zł!

Realizacja dostaw poprzez:

  • ups
  • paczkomaty
  • ruch
  • poczta

OPINIE

Nasza strona używa plików cookies, w celu ułatwienia Ci zakupów. Więcej informacji znajdziesz w polityce prywatności

© 2006-2024 Gildia Internet Services Sp. z o.o. and 2017-2024 Prószyński Media Sp z o.o. PgSearcher