Systemy uczące się oparte na podobieństwie obrazów do prognozowania szeregów czasowych obciążeń elektroenergetycznych.

okładka

Systemy uczące się oparte na podobieństwie obrazów do prognozowania szeregów czasowych obciążeń elektroenergetycznych.

Produkt jest aktualnie niedostępny

Kliknij tutaj, jeśli chcesz otrzymać maila, gdy produkt stanie się ponownie dostępny

OPIS

W monografii przedstawiono modele prognostyczne wykorzystujące metody uczenia maszynowego, rozpoznawania obrazów i inteligencji obliczeniowej do sporządzania krótkoterminowych prognoz obciążeń systemów elektroenergetycznych. Wspólną cechą tych modeli jest uczenie się na podstawie danych i wykorzystanie podobieństw obrazów cykli sezonowych szeregów czasowych obciążeń. Szeregi te są niestacjonarne, heteroskedastyczne, wykazują trend, wiele cykli wahań sezonowych oraz zakłócenia losowe. Nowe podejście oparte na podobieństwie obrazów i lokalnej regresji nieparametrycznej upraszcza problem prognostyczny i umożliwia konstrukcję efektywnych modeli prognostycznych. Modele to opierają się następującym założeniu: jeżeli obrazy cykli sezonowych szeregu czasowego są do siebie podobne (obrazy wejściowe), to obrazy cykli następujących po nich (obrazy prognoz) również są do siebie podobne. Założenie to pozwala budować modele prognostyczne wykorzystujące analogie pomiędzy powtarzającymi się fragmentami szeregu czasowego z wahaniami sezonowymi.

DODATKOWE INFORMACJE

  • Format:165x235 mm
  • Liczba stron:250
  • Oprawa:miękka
  • ISBN-13:9788378370093
  • Data wydania:2012
  • Numer katalogowy:501133

RECENZJEjak działają recenzje?

Lista recenzji jest pusta

DOSTAWA

DARMOWA dostawa powyżej 299 zł!

Realizacja dostaw poprzez:

  • ups
  • paczkomaty
  • ruch
  • poczta

OPINIE

Nasza strona używa plików cookies, w celu ułatwienia Ci zakupów. Więcej informacji znajdziesz w polityce prywatności

© 2006-2024 Gildia Internet Services Sp. z o.o. and 2017-2024 Prószyński Media Sp z o.o. PgSearcher