OPIS
Analiza danych stała się samodzielną dyscypliną wiedzy interesującą specjalistów z wielu branż: analityków biznesowych, statystyków, architektów oprogramowania czy też osoby zajmujące się sztuczną inteligencją. Wydobywanie informacji ze zbiorów danych pozwala na uzyskanie wiedzy niedostępnej w inny sposób. W tym celu dane trzeba odpowiednio przygotować, oczyścić, przetworzyć i oczywiście poddać analizie. Warto również zadbać o ich wizualizację. Do tych wszystkich zadań najlepiej wykorzystać specjalne narzędzia opracowane w języku Python.
Prezentowana książka jest drugim, zaktualizowanym i uzupełnionym, wydaniem klasycznego podręcznika napisanego z myślą o analitykach, którzy dotychczas nie pracowali w Pythonie, oraz o programistach Pythona, którzy nie zajmowali się dotąd analizą danych ani obliczeniami naukowymi. Przedstawiono tu możliwości oferowane przez Pythona 3.6 oraz najnowsze funkcje pakietów Pandas i NumPy, a także środowisk IPython i Jupyter. Przy opisie poszczególnych narzędzi analitycznych wyjaśniono ich działanie i zaprezentowano przykłady ich wykorzystania w sposób efektywny i kreatywny. Ta książka powinna się znaleźć w podręcznej bibliotece każdego analityka danych!
Najważniejsze zagadnienia:
Eksploracja danych za pomocą powłoki IPython i środowiska Jupyter Korzystanie z pakietów NumPy i Pandas Tworzenie wizualizacji danych za pomocą pakietu Matplotlib Praca z danymi regularnych i nieregularnych szeregów czasowych Rozwiązywanie rzeczywistych problemów analitycznych Python: poznaj idealne narzędzie do analizy danych! Wes McKinney jest świetnie znany jako twórca pakietu Pandas - popularnej otwartej biblioteki Pythona przeznaczonej do analizy danych. Zajmuje się językami Python i C++. Jest związany ze środowiskiem analityków pracujących w Pythonie i z Apache Software Foundation, z którą rozwija wiele ciekawych projektów. Obecnie pracuje w Nowym Jorku jako architekt oprogramowania. McKinney często występuje w roli prelegenta na różnych konferencjach. Uwielbia podróże, interesuje się lingwistyką i językami obcymi.