OPIS
Nauka o danych jest nową, interdyscyplinarną dziedziną, funkcjonującą na pograniczu algebry liniowej, modelowania statystycznego, lingwistyki komputerowej, uczenia maszynowego oraz metod akumulacji danych. Jest przydatna między innymi dla analityków biznesowych, statystyków, architektów oprogramowania i osób zajmujących się sztuczną inteligencją. Szczególnie praktycznym narzędziem dla tych specjalistów jest język Python, który zapewnia doskonałe środowisko do analizy danych, uczenia maszynowego i algorytmicznego rozwiązywania problemów.
Niniejsza książka jest doskonałym wprowadzeniem do nauki o danych. Jej autorzy wskażą Ci prostą i szybką drogę do rozwiązywania różnych problemów z tego obszaru za pomocą Pythona oraz powiązanych z nim pakietów do analizy danych i uczenia maszynowego. Dzięki lekturze przejdziesz przez kolejne etapy modyfikowania i wstępnego przetwarzania danych, poznając przy tym podstawowe operacje związane z wczytywaniem danych, przekształcaniem ich, poprawianiem na potrzeby analiz, eksplorowaniem i przetwarzaniem. Poza podstawami opanujesz też zagadnienia uczenia maszynowego, w tym uczenia głębokiego, techniki analizy grafów oraz wizualizacji danych.
Najważniejsze zagadnienia przedstawione w książce:
konfiguracja środowiska Jupyter Notebook
najważniejsze operacje stosowane w nauce o danych
potoki danych i uczenie maszynowe
wprowadzenie do grafów i wizualizacje
biblioteki i pakiety Pythona służące do badań danych
Nauka o danych — fascynujące algorytmy i potężne grafy!