OPIS
Systemy uczące się to algorytmiczne metody uczenia się na podstawie danych. Niesłychany wzrost mocy obliczeniowej komputerów oraz pojemności ich pamięci stworzył możliwości zarówno gromadzenia olbrzymich ilości informacji, jak i ich przetwarzania. Systemy uczące się są dziś podstawą tzw. eksploracji danych, inaczej inteligentnej analizy danych, czyli - by użyć powszechnie stosowanego terminu anglojęzycznego - analiz o nazwie data mining.
SPIS TREŚCI
Przedmowa do wydania pierwszego
Przedmowa do wydania drugiego
1. Liniowe metody klasyfikacji
1.1. Klasyfikacja pod nadzorem - wprowadzenie
1.2. Fisherowska dyskryminacja liniowa
1.3. Dyskryminacja oparta na regresji linowej i logistycznej
1.4. Perceptron Rosenblatta
2. Metody klasyfikacji oparte na rozkładach prawdopodobieństwa
2.1. Klasyfikator bayesowski i metoda największej wiarogodności
2.2. Optymalność reguły bayesowskiej
2.3. Praktyczna konstrukcja klasyfikatorów
3. Metody klasyfikacji oparte na nieparametrycznej estymacji
3.1. Wprowadzenie
3.2. Nieparametryczna estymacja rozkładów w klasach
3.3. Metoda najbliższych sąsiadów
4. Drzewa klasyfikacyjne i rodziny klasyfikatoró
4.1. Wprowadzenie
4.2. Reguły podziału
4.3. Reguły przycinania drzew
4.4. Drzewa klasyfikacyjne - uwagi
4.5. Rodziny klasyfikatorów - algorytmy bagging i boosting
4.6. Rodziny klasyfikatorów - lasy losowe
5. Analiza regresji
5.1. Globalne modele parametryczne
5.2. Regresja nieparametryczna
5.3. Efekty losowe i liniowe modele mieszane
5.4. Uwagi końcowe
6. Uogólnienia metod liniowych
6.1. Dyskryminacja elastyczna
6.2. Maszyny wektoró podpierających
7. Systemy uczące się pod nadzorem - podsumowanie, uwagi dodatkowe
7.1. Podsumowanie
7.2. Uwagi dodatkowe
8. Metody rzutowania, wykrywania zmiennych ukrytych
8.1. Systemy uczące się bez nadzoru - wprowadzenie
8.2. Analiza skłądowych głównych
8.3. Estymacja gęstości wzdłuż interesujących rzutów
8.4. Analiza czynnikowa i analiza skłądowych niezależnych
8.5. Podobieństwo, odmienność i odległość między obiektami
8.6. Skalowanie wielowymiarowe
8.7. Metody jąrowe w systemach uczących się
9. Analiza skupień
9.1. Metody kombinatoryczne
9.2. Metody hierarchiczne - dendrogramy
9.3. Inne metody klasyczne
9.4. Trzy nieklasyczne podejścia do analizy skupień
Książki cytowane
Skorowidz